
NVIDIA CUDA TOOLKIT 11.0.182

RN-06722-001 _v11.0 | May 2020

Release Notes for Windows, Linux, and Mac OS

www.nvidia.com
NVIDIA CUDA Toolkit 11.0.182 RN-06722-001 _v11.0 | ii

TABLE OF CONTENTS

Chapter 1. CUDA Toolkit Major Components... 1
Chapter 2. CUDA 11.0 Release Notes..5

2.1. General CUDA... 5
2.2. CUDA Tools...7

2.2.1. CUDA Compilers... 7
2.2.2. CUDA Developer Tools.. 8

2.3. CUDA Libraries.. 9
2.3.1. cuBLAS Library... 9
2.3.2. cuFFT Library... 10
2.3.3. cuSPARSE Library... 10
2.3.4. cuSOLVER Library...10
2.3.5. NVIDIA Performance Primitives (NPP)...11
2.3.6. nvJPEG... 11
2.3.7. CUDA Math API... 11

2.4. Deprecated and Dropped Features... 12
2.5. Resolved Issues.. 14

2.5.1. General CUDA...14
2.5.2. CUDA Tools.. 14
2.5.3. cuFFT Library... 14
2.5.4. cuRAND Library...14
2.5.5. cuSOLVER Library...15
2.5.6. CUDA Math API... 15
2.5.7. NVIDIA Performance Primitives (NPP)...15
2.5.8. CUDA Profiling Tools Interface (CUPTI)...15

2.6. Known Issues... 15
2.6.1. General CUDA...15
2.6.2. CUDA Tools.. 16
2.6.3. CUDA Compiler... 16
2.6.4. NVIDIA Performance Primitives (NPP)...16
2.6.5. nvJPEG... 17

www.nvidia.com
NVIDIA CUDA Toolkit 11.0.182 RN-06722-001 _v11.0 | iii

LIST OF TABLES

Table 1 CUDA Toolkit and Compatible Driver Versions ...3

www.nvidia.com
NVIDIA CUDA Toolkit 11.0.182 RN-06722-001 _v11.0 | iv

www.nvidia.com
NVIDIA CUDA Toolkit 11.0.182 RN-06722-001 _v11.0 | 1

Chapter 1.
CUDA TOOLKIT MAJOR COMPONENTS

This section provides an overview of the major components of the NVIDIA® CUDA®

Toolkit and points to their locations after installation.
Compiler

The CUDA-C and CUDA-C++ compiler, nvcc, is found in the bin/ directory. It is
built on top of the NVVM optimizer, which is itself built on top of the LLVM compiler
infrastructure. Developers who want to target NVVM directly can do so using the
Compiler SDK, which is available in the nvvm/ directory.
Please note that the following files are compiler-internal and subject to change
without any prior notice.

‣ any file in include/crt and bin/crt
‣ include/common_functions.h, include/device_double_functions.h,

include/device_functions.h, include/host_config.h, include/
host_defines.h, and include/math_functions.h

‣ nvvm/bin/cicc
‣ bin/cudafe++, bin/bin2c, and bin/fatbinary

Tools
The following development tools are available in the bin/ directory (except for
Nsight Visual Studio Edition (VSE) which is installed as a plug-in to Microsoft Visual
Studio, Nsight Compute and Nsight Systems are available in a separate directory).

‣ IDEs: nsight (Linux, Mac), Nsight VSE (Windows)
‣ Debuggers: cuda-memcheck, cuda-gdb (Linux), Nsight VSE (Windows)
‣ Profilers: Nsight Systems, Nsight Compute, nvprof, nvvp, ncu, Nsight VSE

(Windows)
‣ Utilities: cuobjdump, nvdisasm

Libraries
The scientific and utility libraries listed below are available in the lib64/ directory
(DLLs on Windows are in bin/), and their interfaces are available in the include/
directory.

‣ cub (High performance primitives for CUDA)
‣ cublas (BLAS)

CUDA Toolkit Major Components

www.nvidia.com
NVIDIA CUDA Toolkit 11.0.182 RN-06722-001 _v11.0 | 2

‣ cublas_device (BLAS Kernel Interface)
‣ cuda_occupancy (Kernel Occupancy Calculation [header file implementation])
‣ cudadevrt (CUDA Device Runtime)
‣ cudart (CUDA Runtime)
‣ cufft (Fast Fourier Transform [FFT])
‣ cupti (CUDA Profiling Tools Interface)
‣ curand (Random Number Generation)
‣ cusolver (Dense and Sparse Direct Linear Solvers and Eigen Solvers)
‣ cusparse (Sparse Matrix)
‣ libcu++ (CUDA Standard C++ Library)
‣ nvJPEG (JPEG encoding/decoding)
‣ npp (NVIDIA Performance Primitives [image and signal processing])
‣ nvblas ("Drop-in" BLAS)
‣ nvcuvid (CUDA Video Decoder [Windows, Linux])
‣ nvml (NVIDIA Management Library)
‣ nvrtc (CUDA Runtime Compilation)
‣ nvtx (NVIDIA Tools Extension)
‣ thrust (Parallel Algorithm Library [header file implementation])

CUDA Samples

Code samples that illustrate how to use various CUDA and library APIs are available
in the samples/ directory on Linux and Mac, and are installed to C:\ProgramData
\NVIDIA Corporation\CUDA Samples on Windows. On Linux and Mac, the
samples/ directory is read-only and the samples must be copied to another location
if they are to be modified. Further instructions can be found in the Getting Started
Guides for Linux and Mac.

Documentation

The most current version of these release notes can be found online at http://
docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html. Also, the version.txt
file in the root directory of the toolkit will contain the version and build number of
the installed toolkit.

Documentation can be found in PDF form in the doc/pdf/ directory, or in HTML
form at doc/html/index.html and online at http://docs.nvidia.com/cuda/
index.html.

CUDA Driver

Running a CUDA application requires the system with at least one CUDA capable
GPU and a driver that is compatible with the CUDA Toolkit. See Table 1. For
more information various GPU products that are CUDA capable, visit https://
developer.nvidia.com/cuda-gpus.

Each release of the CUDA Toolkit requires a minimum version of the CUDA driver.
The CUDA driver is backward compatible, meaning that applications compiled
against a particular version of the CUDA will continue to work on subsequent (later)
driver releases.

http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
http://docs.nvidia.com/cuda/index.html
http://docs.nvidia.com/cuda/index.html
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus

CUDA Toolkit Major Components

www.nvidia.com
NVIDIA CUDA Toolkit 11.0.182 RN-06722-001 _v11.0 | 3

More information on compatibility can be found at https://docs.nvidia.com/cuda/
cuda-c-best-practices-guide/index.html#cuda-runtime-and-driver-api-version.

Table 1 CUDA Toolkit and Compatible Driver Versions

CUDA Toolkit
Linux x86_64
Driver Version

Windows x86_64
Driver Version

CUDA 11.0.182 >= 450.36.04 >= 451.12

CUDA 10.2.89 >= 440.33 >= 441.22

CUDA 10.1 (10.1.105 general
release, and updates)

>= 418.39 >= 418.96

CUDA 10.0.130 >= 410.48 >= 411.31

CUDA 9.2 (9.2.148 Update 1) >= 396.37 >= 398.26

CUDA 9.2 (9.2.88) >= 396.26 >= 397.44

CUDA 9.1 (9.1.85) >= 390.46 >= 391.29

CUDA 9.0 (9.0.76) >= 384.81 >= 385.54

CUDA 8.0 (8.0.61 GA2) >= 375.26 >= 376.51

CUDA 8.0 (8.0.44) >= 367.48 >= 369.30

CUDA 7.5 (7.5.16) >= 352.31 >= 353.66

CUDA 7.0 (7.0.28) >= 346.46 >= 347.62

For convenience, the NVIDIA driver is installed as part of the CUDA Toolkit
installation. Note that this driver is for development purposes and is not
recommended for use in production with Tesla GPUs.

For running CUDA applications in production with Tesla GPUs, it is recommended
to download the latest driver for Tesla GPUs from the NVIDIA driver downloads site
at http://www.nvidia.com/drivers.

During the installation of the CUDA Toolkit, the installation of the NVIDIA driver
may be skipped on Windows (when using the interactive or silent installation) or on
Linux (by using meta packages).

For more information on customizing the install process on Windows, see http://
docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html#install-
cuda-software.

For meta packages on Linux, see https://docs.nvidia.com/cuda/cuda-installation-
guide-linux/index.html#package-manager-metas

CUDA-GDB Sources
CUDA-GDB sources are available as follows:

‣ For CUDA Toolkit 7.0 and newer, in the installation directory extras/. The
directory is created by default during the toolkit installation unless the .rpm or
.deb package installer is used. In this case, the cuda-gdb-src package must be
manually installed.

‣ For CUDA Toolkit 6.5, 6.0, and 5.5, at https://github.com/NVIDIA/cuda-gdb.

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#cuda-runtime-and-driver-api-version
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#cuda-runtime-and-driver-api-version
http://www.nvidia.com/drivers
http://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html#install-cuda-software
http://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html#install-cuda-software
http://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html#install-cuda-software
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#package-manager-metas
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#package-manager-metas
https://github.com/NVIDIA/cuda-gdb

CUDA Toolkit Major Components

www.nvidia.com
NVIDIA CUDA Toolkit 11.0.182 RN-06722-001 _v11.0 | 4

‣ For CUDA Toolkit 5.0 and earlier, at ftp://download.nvidia.com/CUDAOpen64/.
‣ Upon request by sending an e-mail to mailto:oss-requests@nvidia.com.

ftp://download.nvidia.com/CUDAOpen64/
mailto:oss-requests@nvidia.com

www.nvidia.com
NVIDIA CUDA Toolkit 11.0.182 RN-06722-001 _v11.0 | 5

Chapter 2.
CUDA 11.0 RELEASE NOTES

The release notes for the CUDA Toolkit can be found online at http://docs.nvidia.com/
cuda/cuda-toolkit-release-notes/index.html.

2.1. General CUDA
‣ CUDA 11.0 adds support for the NVIDIA Ampere GPU microarchitecture

(compute_80 and sm_80).
‣ CUDA 11.0 adds support for NVIDIA A100 GPUs and systems that are based on

A100. The A100 GPU adds the following capabilities for compute via CUDA:

‣ Alternate floating point data format bf16 and compute type tf32
‣ Double precision matrix multiply accumulate through the DMMA instruction

(see note on WMMA in CUDA C++ and mma in PTX)
‣ Support for asynchronous copy instructions that allow copying of data

asynchronously (LDGSTS instruction and the corresponding cp.async.* PTX
instructions)

‣ Cooperative groups improvements, which allow reduction operation across
threads in a warp (using the redux.sync instruction)

‣ Support for hardware partitioning via Multi-Instance GPU (MIG). See the driver
release notes on more information on the corresponding NVML APIs and
nvidia-smi CLI tools for configuring MIG instances

‣ Added the 7.0 version of the Parallel Thread Execution instruction set architecture
(ISA). For more details on new (sm_80 target, new instructions, new floating point
data types in CUDA called bf16 and tf32, and new mma shapes) and deprecated
instructions, see this section in the PTX documentation.

‣ CUDA 11.0 adds support for the Arm server platform (arm64 SBSA). Note that with
this release, only the following platforms are supported with Tesla V100 GPU:

‣ HPE Apollo 70 (using Marvell ThunderX2™ CN99XX)
‣ Gigabyte R2851 (using Marvell ThunderX2™ CN99XX)
‣ Huawei TaiShan 2280 V2 (using Huawei Kunpeng 920)

http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#ptx-isa-version-7-0

CUDA 11.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 11.0.182 RN-06722-001 _v11.0 | 6

‣ CUDA supports a wide range of Linux and Windows distributions. For a full list of
supported operating systems, see system requirements for more information. The
following new Linux distributions are supported in CUDA 11.0.

For x86 (x86_64):

‣ Red Hat Enterprise Linux (RHEL) 8.1
‣ Ubuntu 18.04.4 LTS

For Arm (arm64):

‣ SUSE SLES 15.1

For POWER (ppc64le):

‣ Red Hat Enterprise Linux (RHEL) 8.1
‣ CUDA C++ includes support for new data types to support new 16-bit floating

point data (with 1-sign bit, 8-bit exponent and 7-bit mantissa): __nv_bfloat16 and
__nv_bfloat162. See include/cuda_bf16.hpp and the CUDA Math API for
more information on the datatype definition and supported arithmetic operations.

‣ CUDA 11.0 adds the following support for WMMA:

‣ Added support for double (FP64) to the list of available input/output types for
8x8x4 shapes (DMMA.884)

‣ AND bitwise operation supported for BMMA
‣ Added support for bf16 and tf32 precision formats for the HMMA 16x16x8

shape
‣ Added support for cooperative kernels in CUDA graphs, including stream capture

for cuLaunchCooperativeKernel.
‣ The CUDA_VISIBLE_DEVICES variable has been extended to add support for

enumerating Multiple Instance GPUs (MIG) in NVIDIA A100/GA100 GPUs.
‣ Added support for PCIe Relaxed Ordering for GPU initiated writes. This is not

enabled by default but can be enabled by setting the following module parameter on
Linux x86_64: NVreg_EnablePCIERelaxedOrderingMode.

‣ CUDA 11.0 adds a specification for inter-task memory ordering in the "API
Synchronization" subsection of the PTX memory model and allows CUDA's
implementation to be optimized consistent with this addition. In rare cases,
code may have assumed a stronger ordering than required by the added
specification and may notice a functional regression. The environment variable
CUDA_FORCE_INTERTASK_SYSTEM_FENCE may be set to a value of "0" to disable
post-10.2 inter-task fence optimizations, or "1" to enable them for 445 and newer
drivers. If the variable is not set, code compiled entirely against CUDA 10.2 or older
will disable the optimizations and code compiled against 11.0 or newer will enable
them. Code with mixed versions may see a combination.

https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#system-requirements
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#memory-synchronization
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#memory-synchronization
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#memory-consistency-model

CUDA 11.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 11.0.182 RN-06722-001 _v11.0 | 7

2.2. CUDA Tools

2.2.1. CUDA Compilers
‣ The following new compilers are supported as host compilers for the CUDA

compiler (nvcc)

‣ Clang 9
‣ GCC 9
‣ PGI 20.1
‣ ICC 19.1
‣ Arm C/C++ 19.2

‣ The default compilation target for nvcc is now sm_52. Other older targets are either
deprecated or no longer supported. See the Deprecated Features section for more
details.

‣ Added support for Link-Time Optimization (LTO). LTO enables cross-file inlining
and optimization when doing separate compilation. To use LTO, add -dlto to both
the compile and link commands, for example "nvcc -arch=sm_70 -dlto a.cu
b.cu". LTO is currently in technical preview. See the section titled "Optimization of
Separate Compilation" in the nvcc manual for more information.

‣ nvcc added two new flags ('-Wdefault-stream-launch') and ('-
Werror=default-stream-launch') to generate a warning and an error,
respectively, when a stream argument is not explicitly specified in the <<<...>>>
kernel launch syntax. For example:

$ cat j1.cu

__global__ void foo() { }

int main() { foo<<<1,1>>>();

}

$nvcc -Wdefault-stream-launch j1.cu -ptx

j1.cu(2): warning: explicit stream argument not provided in
kernel launch

$nvcc -Werror=default-stream-launch j1.cu -c

j1.cu(2): error: explicit stream argument not provided in kernel
launch

‣ The compiler optimizer now implements more aggressive dead code elimination for
__shared__ variables whose value is not used. For example:

//--__device__ void foo() {

__shared__ int xxx;

xxx = 1;

}

CUDA 11.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 11.0.182 RN-06722-001 _v11.0 | 8

In previous CUDA toolkits, the variable "xxx" is still present in the generated PTX.
With CUDA 11 or later, the variable may be removed in the generated PTX, because
its value is not used. Marking the variable as "volatile" will inhibit this compiler
optimization.

‣ In previous CUDA toolkits, NVRTC on Linux incorrectly added "/usr/include" to
the default header file search path. This issue has been fixed; NVRTC in CUDA 11.0
and later will not implicitly add '/usr/include' to the header file search path.

If some included files are present inside /usr/include, the NVRTC
nvrtcCompileProgram() API call must now be explicitly passed the "/usr/
include" path with the "-I" flag.

‣ nvcc now allows options that take a single argument to be redefined. If the
redefinition is incompatible with the earlier instance, a warning is issued. For
example:

// the following command line is now accepted, previously nvcc
gave an error

$nvcc -rdc=true -rdc=true -c j1.cu

// the following command line is now accepted with a warning (due
to incompatible redefinition of '-rdc' argument), previously nvcc
gave an error

$nvcc -rdc=true -rdc=false -c j1.cu

nvcc warning : incompatible redefinition for option 'relocatable-
device-code'

‣ nvcc implements a new flag '-extra-device-vectorization' , which enables
more aggressive vectorization of device code.

‣ Added support for C++17.
‣ Added support for __attribute__((visibility("default"))).

2.2.2. CUDA Developer Tools
‣ The following developer tools are supported for remote (target) debugging/profiling

of applications on macOS hosts:

‣ Nsight Compute
‣ Nsight Systems
‣ cuda-gdb
‣ NVVP

‣ For new features, improvements, and bug fixes in CUPTI, see the changelog.
‣ For new features, improvements, and bug fixes in Nsight Compute, see the

changelog.
‣ Cuda-gdb is now upgraded to support GDB 8.2.
‣ A new tool called Compute Sanitizer, for memory and race condition checking, is

now included as part of CUDA 11.0.

https://docs.nvidia.com/cupti/Cupti/r_changelog.html#r_changelog
https://docs.nvidia.com/nsight-compute/ReleaseNotes/index.html#whats-new

CUDA 11.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 11.0.182 RN-06722-001 _v11.0 | 9

2.3. CUDA Libraries
This release of the toolkit includes the following updates:

‣ CUDA Math libraries toolchain uses C++11 features, and a C++11-compatible
standard library is required on the host.

‣ cuBLAS 11.0.0
‣ cuFFT 10.1.3
‣ cuRAND 10.2.0
‣ cuSPARSE 11.0.0
‣ cuSOLVER 10.4.0
‣ NPP 11.0.0
‣ nvJPEG 11.0.0

2.3.1. cuBLAS Library
‣ Many performance improvements have been implemented for the NVIDIA Ampere,

Volta, and Turing Architecture based GPUs.
‣ With this release, on Linux systems, the cuBLAS libraries listed below are now

installed in the /usr/local/cuda-11.0 (./lib64/ for lib and ./include/ for
headers) directories as shared and static libraries.

‣ The cuBLASLt logging mechanism can be enabled by setting the following
environment variables before launching the target application:

‣ CUBLASLT_LOG_LEVEL=<level> - while level is one of the following levels:

‣ "0" - Off - logging is disabled (default)
‣ "1" - Error - only errors will be logged
‣ "2" - Trace - API calls will be logged with their parameters and important

information
‣ CUBLASLT_LOG_FILE=<value> - while value is a file name in the

format of "<file_name>.%i", %i will be replaced with the process id. If
CUBLASLT_LOG_FILE is not defined, the log messages are printed to stdout.

‣ For matrix multiplication APIs:

‣ cublasGemmEx, cublasGemmBatchedEx, cublasGemmStridedBatchedEx and
cublasLtMatmul has new data type support for BFLOAT16 (CUDA_R_16BF).

‣ The newly introduced computeType_t changes function prototypes on the API:
cublasGemmEx, cublasGemmBatchedEx, and cublasGemmStridedBatchedEx
have a new signature that uses cublasComputeType_t for the computeType
parameter. Backward compatibility is ensured with internal mapping for C
users and with added overload for C++ users.

‣ cublasLtMatmulDescCreate, cublasLtMatmulAlgoGetIds,
and cublasLtMatmulAlgoInit have new signatures that use
cublasComputeType_t.

CUDA 11.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 11.0.182 RN-06722-001 _v11.0 | 10

‣ A new compute type TensorFloat32 (TF32) has been added to provide tensor
core acceleration for FP32 matrix multiplication routines with full dynamic
range and increased precision compared to BFLOAT16.

‣ New compute modes Default, Pedantic, and Fast have been introduced to offer
more control over compute precision used.

‣ *Init versions of *Create functions are introduced in cublasLt to allow for
simple wrappers that hold all descriptors on stack.

‣ Experimental feature of cuBLASLt API logging is introduced.
‣ Tensor cores are now enabled by default for half-, and mixed-precision- matrix

multiplications.
‣ Double precision tensor cores (DMMA) are used automatically.
‣ Tensor cores can now be used for all sizes and data alignments and for all GPU

architectures:

‣ Selection of these kernels through cuBLAS heuristics is automatic and will
depend on factors such as math mode setting as well as whether it will run
faster than the non-tensor core kernels.

‣ Users should note that while these new kernels that use tensor cores for all
unaligned cases are expected to perform faster than non-tensor core based
kernels but slower than kernels that can be run when all buffers are well
aligned.

2.3.2. cuFFT Library
‣ Reoptimized power of 2 FFT kernels on Volta and Turing architectures.

2.3.3. cuSPARSE Library
‣ Added new generic APIs and improved performance for sparse matrix-sparse

matrix multiplication (SpGEMM): cusparseSpGEMM_workEstimation,
cusparseSpGEMM_compute, and cusparseSpGEMM_copy.

‣ SpVV: added support for __nv_bfloat16.

2.3.4. cuSOLVER Library
‣ Added 64-bit APIs for getrf, getrs, potrf, potrs, geqrf, syevd and syevdx.
‣ This release adds more control and helpful functionalities for the Tensor Cores

Accelerated Iterative Refinement Solver TCAIRS.

‣ In addition to the previously released TCAIRS-LU based solver a new TCAIRS-
QR based solver for real and complex systems with one or multiple right hand
sides is introduced.

‣ In addition to the FP64, FP32 and FP16 computational precisions two new
computational precisions types are supported: the BFLOAT16 and the
TensorFloat32 (TF32). Both TCAIRS-LU and TCAIRS-QR come with the five
computational precisions options. Tensor Float (TF32), introduced with NVIDIA
Ampere Architecture GPUs, is the most robust tensor core accelerated compute
mode for the iterative refinement solver. It is able to solve the widest range of

CUDA 11.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 11.0.182 RN-06722-001 _v11.0 | 11

problems in HPC arising from different applications and provides up to 4X and
5X speedup for real and complex systems, respectively. On Volta and Turing
architecture GPUs, half precision tensor core acceleration is recommended.
In cases where the iterative refinement solver fails to converge to the desired
accuracy (double precision in most cases), it is recommended to use full double
precision factorization and solve (such as [D,Z]GETRF and [D,Z]GETRS or
cusolverDn[DD,ZZ]gesv).

‣ TCAIRS (LU and QR) are released with easy LAPACK-style APIs (drop-in
replacement) as well as expert generic APIs that give users a lot of control of the
internal of the solver. These support all five computational precisions.

‣ Simple and Expert APIs now support all five computational precisions.
‣ Expert TCAIRS solvers APIs allow users to choose between 4 methods of

refinement.
‣ Expert TCAIRS solvers APIs now support a no-refinement option which means

they behave as standard Xgesv/Xgels solvers without refinement.
‣ Performance improvements of the TCAIRS solver for NVIDIA Ampere, Volta, and

Turing Architecture based GPUs.

2.3.5. NVIDIA Performance Primitives (NPP)
‣ Added batching support for nppiLabelMarkersUF functions.
‣ Added the nppiCompressMarkerLabelsUF_32u_C1IR function.
‣ Added nppiSegmentWatershed functions.
‣ Added sample apps on GitHub demonstrating the use of NPP application managed

stream contexts along with watershed segmentation and batched and compressed
UF image label markers functions.

‣ Added support for non-blocking streams.

2.3.6. nvJPEG
‣ Hardware accelerated decode is now supported on NVIDIA A100.
‣ The nvJPEG decode API (nvjpegDecodeJpeg()) now has the flexibility

to select the backend when creating nvjpegJpegDecoder_t object. The
user has the option to call this API instead of making three separate calls to
nvjpegDecodeJpegHost(), nvjpegDecodeJpegTransferToDevice(), and
nvjpegDecodeJpegDevice().

2.3.7. CUDA Math API
‣ Add arithmetic support for __nv_bfloat16 floating-point data type with 8 bits of

exponent, 7 explicit bits of mantissa.
‣ Performance and accuracy improvements in single precision math functions: fmodf,

expf, exp10f, sinhf, and coshf.

http://cuda-repo/docs/cuda/r11.0/11.0.175/nvjpeg/index.html#nvjpeg-decode-jpeg

CUDA 11.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 11.0.182 RN-06722-001 _v11.0 | 12

2.4. Deprecated and Dropped Features
The following features are deprecated or dropped in the current release of the CUDA
software. Deprecated features still work in the current release, but their documentation
may have been removed, and they will become officially unsupported in a future
release. We recommend that developers employ alternative solutions to these features in
their software.
General CUDA

‣ Support for Red Hat Enterprise Linux (RHEL) and CentOS 6.x is dropped.
‣ Support for Kepler sm_30 and sm_32 architecture based products is dropped.
‣ Support for the following compute capabilities are deprecated in the CUDA

Toolkit:

‣ sm_35 (Kepler)
‣ sm_37 (Kepler)
‣ sm_50 (Maxwell)

For more information on GPU products and compute capability, see https://
developer.nvidia.com/cuda-gpus.

‣ Support for Linux cluster packages is dropped.
‣ CUDA 11.0 does not support macOS for developing and running CUDA

applications. Note that some of the CUDA developer tools are still supported on
macOS hosts for remote (target) debugging and profiling. See the CUDA Tools
section for more information.

‣ CUDA 11.0 no longer supports development of CUDA applications on the
following Windows distributions:

‣ Windows 7
‣ Windows 8
‣ Windows Server 2012 R2

‣ nvGraph is no longer included as part of the CUDA Toolkit installers. See
the cuGraph project as part of RAPIDS; the project includes algorithms from
nvGraph and more.

‣ The context creation flag CU_CTX_MAP_HOST (to support mapped pinned
allocations) is deprecated and will be removed in a future release of CUDA.

CUDA Developer Tools

‣ Nsight Eclipse Edition standalone is dropped in CUDA 11.0.
‣ Nsight Compute does not support profiling on Pascal architectures.
‣ Nsight VSE, Nsight EE Plugin, cuda-gdb, nvprof, Visual Profiler, and memcheck

are reducing support for the following architectures:

‣ Support for Kepler sm_30 and sm_32 architecture based products
(deprecated since CUDA 10.2) has beeen dropped.

‣ Support for the following compute capabilities (deprecated since CUDA 10.2)
will be dropped in an upcoming CUDA release:

https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://github.com/rapidsai/cugraph

CUDA 11.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 11.0.182 RN-06722-001 _v11.0 | 13

‣ sm_35 (Kepler)
‣ sm_37 (Kepler)
‣ sm_50 (Maxwell)

CUDA Libraries - cuBLAS

‣ Algorithm selection in cublasGemmEx APIs (including batched variants) is non-
functional for NVIDIA Ampere Architecture GPUs. Regardless of selection it will
default to a heuristics selection. Users are encouraged to use the cublasLt APIs
for algorithm selection functionality.

‣ The matrix multiply math mode CUBLAS_TENSOR_OP_MATH is being deprecated
and will be removed in a future release. Users are encouraged to use the new
cublasComputeType_t enumeration to define compute precision.

CUDA Libraries -- cuSOLVER

‣ TCAIRS-LU expert cusolverDnIRSXgesv() and some of its configuration
functions undergo a minor API change.

CUDA Libraries -- cuSPARSE
The following functions have been removed:

‣ Hybrid format enums and helper functions: cusparseHybPartition_t,
cusparseHybPartition_t, cusparseCreateHybMat,
cusparseDestroyHybMat

‣ Triangular solver enums and helper functions:
cusparseSolveAnalysisInfo_t, cusparseCreateSolveAnalysisInfo,
cusparseDestroySolveAnalysisInfo

‣ Sparse dot product: cusparseXdoti, cusparseXdotci
‣ Sparse matrix-vector multiplication: cusparseXcsrmv, cusparseXcsrmv_mp
‣ Sparse matrix-matrix multiplication: cusparseXcsrmm, cusparseXcsrmm2
‣ Sparse triangular-single vector solver: cusparseXcsrsv_analysis,

cusparseCsrsv_analysisEx, cusparseXcsrsv_solve,
cusparseCsrsv_solveEx

‣ Sparse triangular-multiple vectors solver: cusparseXcsrsm_analysis,
cusparseXcsrsm_solve

‣ Sparse hybrid format solver: cusparseXhybsv_analysis,
cusparseShybsv_solve

‣ Extra functions: cusparseXcsrgeamNnz, cusparseScsrgeam,
cusparseXcsrgemmNnz, cusparseXcsrgemm

‣ Incomplete Cholesky Factorization, level 0: cusparseXcsric0
‣ Incomplete LU Factorization, level 0: cusparseXcsrilu0, cusparseCsrilu0Ex
‣ Tridiagonal Solver: cusparseXgtsv, cusparseXgtsv_nopivot
‣ Batched Tridiagonal Solver: cusparseXgtsvStridedBatch
‣ Reordering: cusparseXcsc2hyb, cusparseXcsr2hyb, cusparseXdense2hyb,

cusparseXhyb2csc, cusparseXhyb2csr, cusparseXhyb2dense

The following functions have been deprecated:

CUDA 11.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 11.0.182 RN-06722-001 _v11.0 | 14

‣ SpGEMM: cusparseXcsrgemm2_bufferSizeExt, cusparseXcsrgemm2Nnz,
cusparseXcsrgemm2

CUDA Libraries -- nvJPEG

‣ The following multiphase APIs have been removed:

‣ nvjpegStatus_t NVJPEGAPI nvjpegDecodePhaseOne
‣ nvjpegStatus_t NVJPEGAPI nvjpegDecodePhaseTwo
‣ nvjpegStatus_t NVJPEGAPI nvjpegDecodePhaseThree
‣ nvjpegStatus_t NVJPEGAPI nvjpegDecodeBatchedPhaseOne
‣ nvjpegStatus_t NVJPEGAPI nvjpegDecodeBatchedPhaseTwo

2.5. Resolved Issues

2.5.1. General CUDA
‣ Fixed an issue where GPU passthrough on arm64 systems was not functional. GPU

passthrough is now supported on arm64, but there may be a small performance
impact to workloads (compared to bare-metal) on some system configurations.

‣ Fixed an issue where starting X on systems with arm64 CPUs and NVIDIA GPUs
would result in a crash.

2.5.2. CUDA Tools
‣ Fixed an issue where NVCC throws a compilation error when a value > 32768 was

used in an __attribute__((aligned(value))).
‣ Fixed an issue in PTXAS where a 64-bit integer modulo operation resulted in illegal

memory access.
‣ Fixed an issue with nvcc where code using the

__is_implicitly_default_constructible type trait would result in an access
violation.

‣ Fixed an issue where NVRTC (nvrtcCompileProgram()) would enter into infinite
loops triggered by some code patterns.

‣ Fixed a compilation time issue in nvcc to improve handling of large numbers of
explicit specialization of function templates.

2.5.3. cuFFT Library
‣ Reduced R2C/C2R plan memory usage to previous levels.
‣ Resolved bug introduced in 10.1 update 1 that caused incorrect results when using

custom strides, batched 2D plans and certain sizes on Volta and later.

2.5.4. cuRAND Library
‣ Introduced CURAND_ORDERING_PSEUDO_LEGACY ordering. Starting with

CUDA 10.0, the ordering of random numbers returned by MTGP32 and MRG32k3a

CUDA 11.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 11.0.182 RN-06722-001 _v11.0 | 15

generators are no longer the same as previous releases despite being guaranteed by
the documentation for the CURAND_ORDERING_PSEUDO_DEFAULT setting. The
CURAND_ORDERING_PSEUDO_LEGACY provides pre-CUDA 10.0 ordering for
MTGP32 and MRG32k3a generators.

‣ Starting with CUDA 11.0 CURAND_ORDERING_PSEUDO_DEFAULT is the same
as CURAND_ORDERING_PSEUDO_BEST for all generators except MT19937. Only
CURAND_ORDERING_PSEUDO_LEGACY is guaranteed to provide the same for
all future cuRAND releases.

2.5.5. cuSOLVER Library
‣ Fixed a race condition of GETRF when running with other kernels concurrently.
‣ Fixed the pivoting strategy of [c|z]getrf to be compliant with LAPACK.
‣ Fixed NAN and INF values that might result in the TCAIRS-LU solver when FP16

was used and matrix entries are outside FP16 range.
‣ Fixed the pivoting strategy of [c|z]getrf to be compliant with LAPACK.
‣ Previously, cusolverSpDcsrlsvchol could overflow 32-bit signed

integer when zero fill-in is huge. Such overflow causes memory corruption.
cusolverSpDcsrlsvchol now returns CUSOLVER_STATUS_ALLOC_FAILED when
integer overflow happens.

2.5.6. CUDA Math API
‣ Corrected documented maximum ulp error thresholds in erfcinvf and powf.
‣ Improved cuda_fp16.h interoperability with Visual Studio C++ compiler.
‣ Updated libdevice user guide and CUDA math API definitions for j1, j1f, fmod,

fmodf, ilogb, and ilogbf math functions.

2.5.7. NVIDIA Performance Primitives (NPP)
‣ Improved quality of nppiLabelMarkersUF functions.
‣ nppiCompressMarkerLabelsUF_32u_C1IR can now handle a huge number of

labels generated by the nppiLabelMarkersUF function.

2.5.8. CUDA Profiling Tools Interface (CUPTI)
‣ The cuptiFinalize() API now allows on-demand detachability of the profiling

tool.

2.6. Known Issues

2.6.1. General CUDA
‣ The nanosleep PTX instruction for Volta and Turing is not supported in this

release of CUDA. It may be fully supported in a future releaseof CUDA. There
may be references to nanosleep in the compiler headers (such as include/crt/

CUDA 11.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 11.0.182 RN-06722-001 _v11.0 | 16

sm_70_rt*). Developers are encouraged to not use this instruction in their CUDA
applications on Volta and Turing until it is fully supported.

‣ Read-only memory mappings (via CU_MEM_ACCESS_FLAGS_PROT_READ in
CUmemAccess_flags) with cuMemSetAccess() API will result in an error. Read-
only memory mappings are currently not supported and may be added in a future
release of CUDA.

‣ Note that the R450 driver bundled with this release of CUDA 11 does not officially
support Windows 10 May 2020 Update and may have issues

‣ GPU workloads are executed on GPU hardware engines. On Windows, these
engines are represented by “nodes”. With Hardware Scheduling disabled for
Windows 10 May 2020 Update, some NVIDIA GPU engines are represented by
virtual nodes, and multiple virtual nodes may represent more than one GPU
hardware engine. This is done to achieve better parallel execution of workloads.
Examples of these virtual nodes are “Cuda”, “Compute_0”, “Compute_1”, and
“Graphics_1” as shown in Windows Task Manager. These correspond to the same
underlying hardware engines as the “3D” node in Windows Task Manager. With
Hardware Scheduling enabled, the virtual nodes are no longer needed, and Task
Manager shows only the “3D”node for the previous “3D” node and multiple virtual
nodes shown before, combined. CUDA is still supported in this scenario.

2.6.2. CUDA Tools
‣ The legacy profiling tools nvprof and NVVP do not support the NVIDIA Ampere

architecture.
‣ Arithmetic is not supported on __nv_bfloat16 floating point variables in the

Nsight debugger watch window.
‣ In some cases, cuda-gdb has a dependency on Python that can be resolved by

installing the libpython-dev packages on Linux. For example, on Ubuntu use: sudo
apt install libpython-dev.

‣ For remote debugging on macOS with cuda-gdb, disassembly of code is not
supported and may return an error. This issue will be addressed in the production
release of CUDA 11.0.

2.6.3. CUDA Compiler
‣ Sample 0_Simple/simpleSeparateCompilation fails to build with the error

"cc: unknown target 'gcc_ntox86". The workaround to allow the build to pass is
by passing additionally EXTRA_NVCCFLAGS="-arbin $QNX_HOST/usr/bin/
aarch64-unknown-nto-qnx7.0.0-ar".

2.6.4. NVIDIA Performance Primitives (NPP)
‣ The nppiCopy API is limited by CUDA thread for large image size. Maximum

image limits is a minimum of 16 * 65,535 = 1,048,560 horizontal pixels of any data
type and number of channels and 8 * 65,535 = 524,280 vertical pixels for a maximum
total of 549,739,036,800 pixels.

CUDA 11.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 11.0.182 RN-06722-001 _v11.0 | 17

2.6.5. nvJPEG
‣ NVJPEG_BACKEND_GPU_HYBRID has an issue when handling bit-streams which have

corruption in the scan.

Acknowledgments

NVIDIA extends thanks to Professor Mike Giles of Oxford University for providing
the initial code for the optimized version of the device implementation of the
double-precision exp() function found in this release of the CUDA toolkit.

NVIDIA acknowledges Scott Gray for his work on small-tile GEMM kernels for
Pascal. These kernels were originally developed for OpenAI and included since
cuBLAS 8.0.61.2.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2007-2020 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	List of Tables
	CUDA Toolkit Major Components
	CUDA 11.0 Release Notes
	2.1. General CUDA
	2.2. CUDA Tools
	2.2.1. CUDA Compilers
	2.2.2. CUDA Developer Tools

	2.3. CUDA Libraries
	2.3.1. cuBLAS Library
	2.3.2. cuFFT Library
	2.3.3. cuSPARSE Library
	2.3.4. cuSOLVER Library
	2.3.5. NVIDIA Performance Primitives (NPP)
	2.3.6. nvJPEG
	2.3.7. CUDA Math API

	2.4. Deprecated and Dropped Features
	2.5. Resolved Issues
	2.5.1. General CUDA
	2.5.2. CUDA Tools
	2.5.3. cuFFT Library
	2.5.4. cuRAND Library
	2.5.5. cuSOLVER Library
	2.5.6. CUDA Math API
	2.5.7. NVIDIA Performance Primitives (NPP)
	2.5.8. CUDA Profiling Tools Interface (CUPTI)

	2.6. Known Issues
	2.6.1. General CUDA
	2.6.2. CUDA Tools
	2.6.3. CUDA Compiler
	2.6.4. NVIDIA Performance Primitives (NPP)
	2.6.5. nvJPEG

