1.2. Single Precision Mathematical Functions
This section describes single precision mathematical functions.
Functions
- __device__ float acosf ( float x )
- Calculate the arc cosine of the input argument.
- __device__ float acoshf ( float x )
- Calculate the nonnegative arc hyperbolic cosine of the input argument.
- __device__ float asinf ( float x )
- Calculate the arc sine of the input argument.
- __device__ float asinhf ( float x )
- Calculate the arc hyperbolic sine of the input argument.
- __device__ float atan2f ( float x, float y )
- Calculate the arc tangent of the ratio of first and second input arguments.
- __device__ float atanf ( float x )
- Calculate the arc tangent of the input argument.
- __device__ float atanhf ( float x )
- Calculate the arc hyperbolic tangent of the input argument.
- __device__ float cbrtf ( float x )
- Calculate the cube root of the input argument.
- __device__ float ceilf ( float x )
- Calculate ceiling of the input argument.
- __device__ float copysignf ( float x, float y )
- Create value with given magnitude, copying sign of second value.
- __device__ float cosf ( float x )
- Calculate the cosine of the input argument.
- __device__ float coshf ( float x )
- Calculate the hyperbolic cosine of the input argument.
- __device__ float cospif ( float x )
- Calculate the cosine of the input argument .
- __device__ float erfcf ( float x )
- Calculate the complementary error function of the input argument.
- __device__ float erfcinvf ( float y )
- Calculate the inverse complementary error function of the input argument.
- __device__ float erfcxf ( float x )
- Calculate the scaled complementary error function of the input argument.
- __device__ float erff ( float x )
- Calculate the error function of the input argument.
- __device__ float erfinvf ( float y )
- Calculate the inverse error function of the input argument.
- __device__ float exp10f ( float x )
- Calculate the base 10 exponential of the input argument.
- __device__ float exp2f ( float x )
- Calculate the base 2 exponential of the input argument.
- __device__ float expf ( float x )
- Calculate the base exponential of the input argument.
- __device__ float expm1f ( float x )
- Calculate the base exponential of the input argument, minus 1.
- __device__ float fabsf ( float x )
- Calculate the absolute value of its argument.
- __device__ float fdimf ( float x, float y )
- Compute the positive difference between x and y.
- __device__ float fdividef ( float x, float y )
- Divide two floating point values.
- __device__ float floorf ( float x )
- Calculate the largest integer less than or equal to x.
- __device__ float fmaf ( float x, float y, float z )
- Compute as a single operation.
- __device__ float fmaxf ( float x, float y )
- Determine the maximum numeric value of the arguments.
- __device__ float fminf ( float x, float y )
- Determine the minimum numeric value of the arguments.
- __device__ float fmodf ( float x, float y )
- Calculate the floating-point remainder of x / y.
- __device__ float frexpf ( float x, int* nptr )
- Extract mantissa and exponent of a floating-point value.
- __device__ float hypotf ( float x, float y )
- Calculate the square root of the sum of squares of two arguments.
- __device__ int ilogbf ( float x )
- Compute the unbiased integer exponent of the argument.
- __device__ int isfinite ( float a )
- Determine whether argument is finite.
- __device__ int isinf ( float a )
- Determine whether argument is infinite.
- __device__ int isnan ( float a )
- Determine whether argument is a NaN.
- __device__ float j0f ( float x )
- Calculate the value of the Bessel function of the first kind of order 0 for the input argument.
- __device__ float j1f ( float x )
- Calculate the value of the Bessel function of the first kind of order 1 for the input argument.
- __device__ float jnf ( int n, float x )
- Calculate the value of the Bessel function of the first kind of order n for the input argument.
- __device__ float ldexpf ( float x, int exp )
- Calculate the value of .
- __device__ float lgammaf ( float x )
- Calculate the natural logarithm of the absolute value of the gamma function of the input argument.
- __device__ long long int llrintf ( float x )
- Round input to nearest integer value.
- __device__ long long int llroundf ( float x )
- Round to nearest integer value.
- __device__ float log10f ( float x )
- Calculate the base 10 logarithm of the input argument.
- __device__ float log1pf ( float x )
- Calculate the value of .
- __device__ float log2f ( float x )
- Calculate the base 2 logarithm of the input argument.
- __device__ float logbf ( float x )
- Calculate the floating point representation of the exponent of the input argument.
- __device__ float logf ( float x )
- Calculate the natural logarithm of the input argument.
- __device__ long int lrintf ( float x )
- Round input to nearest integer value.
- __device__ long int lroundf ( float x )
- Round to nearest integer value.
- __device__ float modff ( float x, float* iptr )
- Break down the input argument into fractional and integral parts.
- __device__ float nanf ( const char* tagp )
- Returns "Not a Number" value.
- __device__ float nearbyintf ( float x )
- Round the input argument to the nearest integer.
- __device__ float nextafterf ( float x, float y )
- Return next representable single-precision floating-point value afer argument.
- __device__ float normcdff ( float y )
- Calculate the standard normal cumulative distribution function.
- __device__ float normcdfinvf ( float y )
- Calculate the inverse of the standard normal cumulative distribution function.
- __device__ float powf ( float x, float y )
- Calculate the value of first argument to the power of second argument.
- __device__ float rcbrtf ( float x )
- Calculate reciprocal cube root function.
- __device__ float remainderf ( float x, float y )
- Compute single-precision floating-point remainder.
- __device__ float remquof ( float x, float y, int* quo )
- Compute single-precision floating-point remainder and part of quotient.
- __device__ float rintf ( float x )
- Round input to nearest integer value in floating-point.
- __device__ float roundf ( float x )
- Round to nearest integer value in floating-point.
- __device__ float rsqrtf ( float x )
- Calculate the reciprocal of the square root of the input argument.
- __device__ float scalblnf ( float x, long int n )
- Scale floating-point input by integer power of two.
- __device__ float scalbnf ( float x, int n )
- Scale floating-point input by integer power of two.
- __device__ int signbit ( float a )
- Return the sign bit of the input.
- __device__ void sincosf ( float x, float* sptr, float* cptr )
- Calculate the sine and cosine of the first input argument.
- __device__ void sincospif ( float x, float* sptr, float* cptr )
- Calculate the sine and cosine of the first input argument .
- __device__ float sinf ( float x )
- Calculate the sine of the input argument.
- __device__ float sinhf ( float x )
- Calculate the hyperbolic sine of the input argument.
- __device__ float sinpif ( float x )
- Calculate the sine of the input argument .
- __device__ float sqrtf ( float x )
- Calculate the square root of the input argument.
- __device__ float tanf ( float x )
- Calculate the tangent of the input argument.
- __device__ float tanhf ( float x )
- Calculate the hyperbolic tangent of the input argument.
- __device__ float tgammaf ( float x )
- Calculate the gamma function of the input argument.
- __device__ float truncf ( float x )
- Truncate input argument to the integral part.
- __device__ float y0f ( float x )
- Calculate the value of the Bessel function of the second kind of order 0 for the input argument.
- __device__ float y1f ( float x )
- Calculate the value of the Bessel function of the second kind of order 1 for the input argument.
- __device__ float ynf ( int n, float x )
- Calculate the value of the Bessel function of the second kind of order n for the input argument.
Functions
- __device__ float acosf ( float x )
-
Calculate the arc cosine of the input argument. Calculate the principal value of the arc cosine of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Result will be in radians, in the interval [0, ] for x inside [-1, +1].
- acosf(1) returns +0.
- acosf(x) returns NaN for x outside [-1, +1].
- __device__ float acoshf ( float x )
-
Calculate the nonnegative arc hyperbolic cosine of the input argument. Calculate the nonnegative arc hyperbolic cosine of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Result will be in the interval [0, ].
- acoshf(1) returns 0.
- acoshf(x) returns NaN for x in the interval [ , 1).
- __device__ float asinf ( float x )
-
Calculate the arc sine of the input argument. Calculate the principal value of the arc sine of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Result will be in radians, in the interval [- , + ] for x inside [-1, +1].
- asinf(0) returns +0.
- asinf(x) returns NaN for x outside [-1, +1].
- __device__ float asinhf ( float x )
-
Calculate the arc hyperbolic sine of the input argument. Calculate the arc hyperbolic sine of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- asinhf(0) returns 1.
- __device__ float atan2f ( float x, float y )
-
Calculate the arc tangent of the ratio of first and second input arguments. Calculate the principal value of the arc tangent of the ratio of first and second input arguments x / y. The quadrant of the result is determined by the signs of inputs x and y.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Result will be in radians, in the interval [- , + ].
- atan2f(0, 1) returns +0.
- __device__ float atanf ( float x )
-
Calculate the arc tangent of the input argument. Calculate the principal value of the arc tangent of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Result will be in radians, in the interval [- , + ].
- atanf(0) returns +0.
- __device__ float atanhf ( float x )
-
Calculate the arc hyperbolic tangent of the input argument. Calculate the arc hyperbolic tangent of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- atanhf( ) returns .
- atanhf( ) returns .
- atanhf(x) returns NaN for x outside interval [-1, 1].
- __device__ float cbrtf ( float x )
-
Calculate the cube root of the input argument. Calculate the cube root of x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns .
- cbrtf( ) returns .
- cbrtf( ) returns .
- __device__ float ceilf ( float x )
-
Calculate ceiling of the input argument. Compute the smallest integer value not less than x.
Returns
Returns expressed as a floating-point number.
- ceilf( ) returns .
- ceilf( ) returns .
- __device__ float copysignf ( float x, float y )
-
Create value with given magnitude, copying sign of second value. Create a floating-point value with the magnitude x and the sign of y.
Returns
Returns a value with the magnitude of x and the sign of y.
- __device__ float cosf ( float x )
-
Calculate the cosine of the input argument. Calculate the cosine of the input argument x (measured in radians).
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
-
This function is affected by the --use_fast_math compiler flag. See the CUDA C Programming Guide, Appendix C, Table C-3 for a complete list of functions affected.
Returns
- cosf(0) returns 1.
- cosf( ) returns NaN.
-
- __device__ float coshf ( float x )
-
Calculate the hyperbolic cosine of the input argument. Calculate the hyperbolic cosine of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- coshf(0) returns 1.
- coshf( ) returns NaN.
- __device__ float cospif ( float x )
-
Calculate the cosine of the input argument . Calculate the cosine of x (measured in radians), where x is the input argument.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- cospif( ) returns 1.
- cospif( ) returns NaN.
- __device__ float erfcf ( float x )
-
Calculate the complementary error function of the input argument. Calculate the complementary error function of the input argument x, 1 - erf(x).
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- erfcf( ) returns 2.
- erfcf( ) returns +0.
- __device__ float erfcinvf ( float y )
-
Calculate the inverse complementary error function of the input argument. Calculate the inverse complementary error function of the input argument y, for y in the interval [0, 2]. The inverse complementary error function find the value x that satisfies the equation y = erfc(x), for , and .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- erfcinvf(0) returns .
- erfcinvf(2) returns .
- __device__ float erfcxf ( float x )
-
Calculate the scaled complementary error function of the input argument. Calculate the scaled complementary error function of the input argument x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- erfcxf( ) returns
- erfcxf( ) returns +0
- erfcxf(x) returns if the correctly calculated value is outside the single floating point range.
- __device__ float erff ( float x )
-
Calculate the error function of the input argument. Calculate the value of the error function for the input argument x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- erff( ) returns .
- erff( ) returns .
- __device__ float erfinvf ( float y )
-
Calculate the inverse error function of the input argument. Calculate the inverse error function of the input argument y, for y in the interval [-1, 1]. The inverse error function finds the value x that satisfies the equation y = erf(x), for , and .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- erfinvf(1) returns .
- erfinvf(-1) returns .
- __device__ float exp10f ( float x )
-
Calculate the base 10 exponential of the input argument. Calculate the base 10 exponential of the input argument x.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
-
This function is affected by the --use_fast_math compiler flag. See the CUDA C Programming Guide, Appendix C, Table C-3 for a complete list of functions affected.
Returns
Returns .
-
- __device__ float exp2f ( float x )
-
Calculate the base 2 exponential of the input argument. Calculate the base 2 exponential of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns .
- __device__ float expf ( float x )
-
Calculate the base exponential of the input argument. Calculate the base exponential of the input argument x, .
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
-
This function is affected by the --use_fast_math compiler flag. See the CUDA C Programming Guide, Appendix C, Table C-3 for a complete list of functions affected.
Returns
Returns .
-
- __device__ float expm1f ( float x )
-
Calculate the base exponential of the input argument, minus 1. Calculate the base exponential of the input argument x, minus 1.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns .
- __device__ float fabsf ( float x )
-
Calculate the absolute value of its argument. Calculate the absolute value of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the absolute value of its argument.
- fabs( ) returns .
- fabs( ) returns 0.
- __device__ float fdimf ( float x, float y )
-
Compute the positive difference between x and y. Compute the positive difference between x and y. The positive difference is x - y when x > y and +0 otherwise.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the positive difference between x and y.
- fdimf(x, y) returns x - y if x > y.
- fdimf(x, y) returns +0 if xy.
- __device__ float fdividef ( float x, float y )
-
Divide two floating point values. Compute x divided by y. If --use_fast_math is specified, use __fdividef() for higher performance, otherwise use normal division.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
-
This function is affected by the --use_fast_math compiler flag. See the CUDA C Programming Guide, Appendix C, Table C-3 for a complete list of functions affected.
Returns
Returns x / y.
-
- __device__ float floorf ( float x )
-
Calculate the largest integer less than or equal to x. Calculate the largest integer value which is less than or equal to x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns expressed as a floating-point number.
- floorf( ) returns .
- floorf( ) returns .
- __device__ float fmaf ( float x, float y, float z )
-
Compute as a single operation. Compute the value of as a single ternary operation. After computing the value to infinite precision, the value is rounded once.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the rounded value of as a single operation.
- fmaf( , , z) returns NaN.
- fmaf( , , z) returns NaN.
- fmaf(x, y, ) returns NaN if is an exact .
- fmaf(x, y, ) returns NaN if is an exact .
- __device__ float fmaxf ( float x, float y )
-
Determine the maximum numeric value of the arguments. Determines the maximum numeric value of the arguments x and y. Treats NaN arguments as missing data. If one argument is a NaN and the other is legitimate numeric value, the numeric value is chosen.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the maximum numeric values of the arguments x and y.
- If both arguments are NaN, returns NaN.
- If one argument is NaN, returns the numeric argument.
- __device__ float fminf ( float x, float y )
-
Determine the minimum numeric value of the arguments. Determines the minimum numeric value of the arguments x and y. Treats NaN arguments as missing data. If one argument is a NaN and the other is legitimate numeric value, the numeric value is chosen.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the minimum numeric values of the arguments x and y.
- If both arguments are NaN, returns NaN.
- If one argument is NaN, returns the numeric argument.
- __device__ float fmodf ( float x, float y )
-
Calculate the floating-point remainder of x / y. Calculate the floating-point remainder of x / y. The absolute value of the computed value is always less than y's absolute value and will have the same sign as x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- Returns the floating point remainder of x / y.
- fmodf( , y) returns if y is not zero.
- fmodf(x, y) returns NaN and raised an invalid floating point exception if x is or y is zero.
- fmodf(x, y) returns zero if y is zero or the result would overflow.
- fmodf(x, ) returns x if x is finite.
- fmodf(x, 0) returns NaN.
- __device__ float frexpf ( float x, int* nptr )
-
Extract mantissa and exponent of a floating-point value. Decomposes the floating-point value x into a component m for the normalized fraction element and another term n for the exponent. The absolute value of m will be greater than or equal to 0.5 and less than 1.0 or it will be equal to 0; . The integer exponent n will be stored in the location to which nptr points.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the fractional component m.
- frexp(0, nptr) returns 0 for the fractional component and zero for the integer component.
- frexp( , nptr) returns and stores zero in the location pointed to by nptr.
- frexp( , nptr) returns and stores an unspecified value in the location to which nptr points.
- frexp(NaN, y) returns a NaN and stores an unspecified value in the location to which nptr points.
- __device__ float hypotf ( float x, float y )
-
Calculate the square root of the sum of squares of two arguments. Calculates the length of the hypotenuse of a right triangle whose two sides have lengths x and y without undue overflow or underflow.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the length of the hypotenuse . If the correct value would overflow, returns . If the correct value would underflow, returns 0.
- __device__ int ilogbf ( float x )
-
Compute the unbiased integer exponent of the argument. Calculates the unbiased integer exponent of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- If successful, returns the unbiased exponent of the argument.
- ilogbf(0) returns INT_MIN.
- ilogbf(NaN) returns NaN.
- ilogbf(x) returns INT_MAX if x is or the correct value is greater than INT_MAX.
- ilogbf(x) return INT_MIN if the correct value is less than INT_MIN.
- __device__ int isfinite ( float a )
-
Determine whether argument is finite. Determine whether the floating-point value a is a finite value (zero, subnormal, or normal and not infinity or NaN).
Returns
Returns a nonzero value if and only if a is a finite value.
- __device__ int isinf ( float a )
-
Determine whether argument is infinite. Determine whether the floating-point value a is an infinite value (positive or negative).
Returns
Returns a nonzero value if and only if a is a infinite value.
- __device__ int isnan ( float a )
-
Determine whether argument is a NaN. Determine whether the floating-point value a is a NaN.
Returns
Returns a nonzero value if and only if a is a NaN value.
- __device__ float j0f ( float x )
-
Calculate the value of the Bessel function of the first kind of order 0 for the input argument. Calculate the value of the Bessel function of the first kind of order 0 for the input argument x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the value of the Bessel function of the first kind of order 0.
- j0f( ) returns +0.
- j0f(NaN) returns NaN.
- __device__ float j1f ( float x )
-
Calculate the value of the Bessel function of the first kind of order 1 for the input argument. Calculate the value of the Bessel function of the first kind of order 1 for the input argument x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the value of the Bessel function of the first kind of order 1.
- j1f( ) returns .
- j1f( ) returns +0.
- j1f(NaN) returns NaN.
- __device__ float jnf ( int n, float x )
-
Calculate the value of the Bessel function of the first kind of order n for the input argument. Calculate the value of the Bessel function of the first kind of order n for the input argument x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the value of the Bessel function of the first kind of order n.
- jnf(n, NaN) returns NaN.
- jnf(n, x) returns NaN for n < 0.
- jnf(n, ) returns +0.
- __device__ float ldexpf ( float x, int exp )
-
Calculate the value of . Calculate the value of of the input arguments x and exp.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- ldexpf(x) returns if the correctly calculated value is outside the single floating point range.
- __device__ float lgammaf ( float x )
-
Calculate the natural logarithm of the absolute value of the gamma function of the input argument. Calculate the natural logarithm of the absolute value of the gamma function of the input argument x, namely the value of .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- lgammaf(1) returns +0.
- lgammaf(2) returns +0.
- lgammaf(x) returns if the correctly calculated value is outside the single floating point range.
- lgammaf(x) returns if x 0.
- lgammaf( ) returns .
- lgammaf( ) returns .
- __device__ long long int llrintf ( float x )
-
Round input to nearest integer value. Round x to the nearest integer value, with halfway cases rounded towards zero. If the result is outside the range of the return type, the result is undefined.
Returns
Returns rounded integer value.
- __device__ long long int llroundf ( float x )
-
Round to nearest integer value. Round x to the nearest integer value, with halfway cases rounded away from zero. If the result is outside the range of the return type, the result is undefined.
Note:This function may be slower than alternate rounding methods. See llrintf().
Returns
Returns rounded integer value.
- __device__ float log10f ( float x )
-
Calculate the base 10 logarithm of the input argument. Calculate the base 10 logarithm of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- log10f( ) returns .
- log10f(1) returns +0.
- log10f(x) returns NaN for x < 0.
- log10f( ) returns .
- __device__ float log1pf ( float x )
-
Calculate the value of . Calculate the value of of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- log1pf( ) returns .
- log1pf(-1) returns +0.
- log1pf(x) returns NaN for x < -1.
- log1pf( ) returns .
- __device__ float log2f ( float x )
-
Calculate the base 2 logarithm of the input argument. Calculate the base 2 logarithm of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- log2f( ) returns .
- log2f(1) returns +0.
- log2f(x) returns NaN for x < 0.
- log2f( ) returns .
- __device__ float logbf ( float x )
-
Calculate the floating point representation of the exponent of the input argument. Calculate the floating point representation of the exponent of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- logbf returns
- logbf returns
- __device__ float logf ( float x )
-
Calculate the natural logarithm of the input argument. Calculate the natural logarithm of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- logf( ) returns .
- logf(1) returns +0.
- logf(x) returns NaN for x < 0.
- logf( ) returns .
- __device__ long int lrintf ( float x )
-
Round input to nearest integer value. Round x to the nearest integer value, with halfway cases rounded towards zero. If the result is outside the range of the return type, the result is undefined.
Returns
Returns rounded integer value.
- __device__ long int lroundf ( float x )
-
Round to nearest integer value. Round x to the nearest integer value, with halfway cases rounded away from zero. If the result is outside the range of the return type, the result is undefined.
Note:This function may be slower than alternate rounding methods. See lrintf().
Returns
Returns rounded integer value.
- __device__ float modff ( float x, float* iptr )
-
Break down the input argument into fractional and integral parts. Break down the argument x into fractional and integral parts. The integral part is stored in the argument iptr. Fractional and integral parts are given the same sign as the argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- modff( , iptr) returns a result with the same sign as x.
- modff( , iptr) returns and stores in the object pointed to by iptr.
- modff(NaN, iptr) stores a NaN in the object pointed to by iptr and returns a NaN.
- __device__ float nanf ( const char* tagp )
-
Returns "Not a Number" value. Return a representation of a quiet NaN. Argument tagp selects one of the possible representations.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- nanf(tagp) returns NaN.
- __device__ float nearbyintf ( float x )
-
Round the input argument to the nearest integer. Round argument x to an integer value in single precision floating-point format.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- nearbyintf( ) returns .
- nearbyintf( ) returns .
- __device__ float nextafterf ( float x, float y )
-
Return next representable single-precision floating-point value afer argument. Calculate the next representable single-precision floating-point value following x in the direction of y. For example, if y is greater than x, nextafterf() returns the smallest representable number greater than x
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- nextafterf( , y) returns .
- __device__ float normcdff ( float y )
-
Calculate the standard normal cumulative distribution function. Calculate the cumulative distribution function of the standard normal distribution for input argument y, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- normcdff( ) returns 1
- normcdff( ) returns +0
- __device__ float normcdfinvf ( float y )
-
Calculate the inverse of the standard normal cumulative distribution function. Calculate the inverse of the standard normal cumulative distribution function for input argument y, . The function is defined for input values in the interval .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- normcdfinvf(0) returns .
- normcdfinvf(1) returns .
- normcdfinvf(x) returns NaN if x is not in the interval [0,1].
- __device__ float powf ( float x, float y )
-
Calculate the value of first argument to the power of second argument. Calculate the value of x to the power of y.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- powf( , y) returns for y an integer less than 0.
- powf( , y) returns for y an odd integer greater than 0.
- powf( , y) returns +0 for y > 0 and not and odd integer.
- powf(-1, ) returns 1.
- powf(+1, y) returns 1 for any y, even a NaN.
- powf(x, ) returns 1 for any x, even a NaN.
- powf(x, y) returns a NaN for finite x < 0 and finite non-integer y.
- powf(x, ) returns for .
- powf(x, ) returns +0 for .
- powf(x, ) returns +0 for .
- powf(x, ) returns for .
- powf( , y) returns -0 for y an odd integer less than 0.
- powf( , y) returns +0 for y < 0 and not an odd integer.
- powf( , y) returns for y an odd integer greater than 0.
- powf( , y) returns for y > 0 and not an odd integer.
- powf( , y) returns +0 for y < 0.
- powf( , y) returns for y > 0.
- __device__ float rcbrtf ( float x )
-
Calculate reciprocal cube root function. Calculate reciprocal cube root function of x
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- rcbrt( ) returns .
- rcbrt( ) returns .
- __device__ float remainderf ( float x, float y )
-
Compute single-precision floating-point remainder. Compute single-precision floating-point remainder r of dividing x by y for nonzero y. Thus . The value n is the integer value nearest . In the case when , the even n value is chosen.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- remainderf(x, 0) returns NaN.
- remainderf( , y) returns NaN.
- remainderf(x, ) returns x for finite x.
- __device__ float remquof ( float x, float y, int* quo )
-
Compute single-precision floating-point remainder and part of quotient. Compute a double-precision floating-point remainder in the same way as the remainderf() function. Argument quo returns part of quotient upon division of x by y. Value quo has the same sign as and may not be the exact quotient but agrees with the exact quotient in the low order 3 bits.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the remainder.
- remquof(x, 0, quo) returns NaN.
- remquof( , y, quo) returns NaN.
- remquof(x, , quo) returns x.
- __device__ float rintf ( float x )
-
Round input to nearest integer value in floating-point. Round x to the nearest integer value in floating-point format, with halfway cases rounded towards zero.
Returns
Returns rounded integer value.
- __device__ float roundf ( float x )
-
Round to nearest integer value in floating-point. Round x to the nearest integer value in floating-point format, with halfway cases rounded away from zero.
Note:This function may be slower than alternate rounding methods. See rintf().
Returns
Returns rounded integer value.
- __device__ float rsqrtf ( float x )
-
Calculate the reciprocal of the square root of the input argument. Calculate the reciprocal of the nonnegative square root of x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns .
- rsqrtf( ) returns +0.
- rsqrtf( ) returns .
- rsqrtf(x) returns NaN if x is less than 0.
- __device__ float scalblnf ( float x, long int n )
-
Scale floating-point input by integer power of two. Scale x by by efficient manipulation of the floating-point exponent.
Returns
Returns x * .
- scalblnf( , n) returns .
- scalblnf(x, 0) returns x.
- scalblnf( , n) returns .
- __device__ float scalbnf ( float x, int n )
-
Scale floating-point input by integer power of two. Scale x by by efficient manipulation of the floating-point exponent.
Returns
Returns x * .
- scalbnf( , n) returns .
- scalbnf(x, 0) returns x.
- scalbnf( , n) returns .
- __device__ int signbit ( float a )
-
Return the sign bit of the input. Determine whether the floating-point value a is negative.
Returns
Returns a nonzero value if and only if a is negative. Reports the sign bit of all values including infinities, zeros, and NaNs.
- __device__ void sincosf ( float x, float* sptr, float* cptr )
-
Calculate the sine and cosine of the first input argument. Calculate the sine and cosine of the first input argument x (measured in radians). The results for sine and cosine are written into the second argument, sptr, and, respectively, third argument, cptr.
See also:
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
-
This function is affected by the --use_fast_math compiler flag. See the CUDA C Programming Guide, Appendix C, Table C-3 for a complete list of functions affected.
Returns
- none
-
- __device__ void sincospif ( float x, float* sptr, float* cptr )
-
Calculate the sine and cosine of the first input argument . Calculate the sine and cosine of the first input argument, x (measured in radians), . The results for sine and cosine are written into the second argument, sptr, and, respectively, third argument, cptr.
See also:
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- none
- __device__ float sinf ( float x )
-
Calculate the sine of the input argument. Calculate the sine of the input argument x (measured in radians).
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
-
This function is affected by the --use_fast_math compiler flag. See the CUDA C Programming Guide, Appendix C, Table C-3 for a complete list of functions affected.
Returns
- sinf( ) returns .
- sinf( ) returns NaN.
-
- __device__ float sinhf ( float x )
-
Calculate the hyperbolic sine of the input argument. Calculate the hyperbolic sine of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- sinhf( ) returns .
- sinhf( ) returns NaN.
- __device__ float sinpif ( float x )
-
Calculate the sine of the input argument . Calculate the sine of x (measured in radians), where x is the input argument.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- sinpif( ) returns .
- sinpif( ) returns NaN.
- __device__ float sqrtf ( float x )
-
Calculate the square root of the input argument. Calculate the nonnegative square root of x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns .
- sqrtf( ) returns .
- sqrtf( ) returns .
- sqrtf(x) returns NaN if x is less than 0.
- __device__ float tanf ( float x )
-
Calculate the tangent of the input argument. Calculate the tangent of the input argument x (measured in radians).
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
-
This function is affected by the --use_fast_math compiler flag. See the CUDA C Programming Guide, Appendix C, Table C-3 for a complete list of functions affected.
Returns
- tanf( ) returns .
- tanf( ) returns NaN.
-
- __device__ float tanhf ( float x )
-
Calculate the hyperbolic tangent of the input argument. Calculate the hyperbolic tangent of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- tanhf( ) returns .
- __device__ float tgammaf ( float x )
-
Calculate the gamma function of the input argument. Calculate the gamma function of the input argument x, namely the value of .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- tgammaf( ) returns .
- tgammaf(2) returns +0.
- tgammaf(x) returns if the correctly calculated value is outside the single floating point range.
- tgammaf(x) returns NaN if x < 0.
- tgammaf( ) returns NaN.
- tgammaf( ) returns .
- __device__ float truncf ( float x )
-
Truncate input argument to the integral part. Round x to the nearest integer value that does not exceed x in magnitude.
Returns
Returns truncated integer value.
- __device__ float y0f ( float x )
-
Calculate the value of the Bessel function of the second kind of order 0 for the input argument. Calculate the value of the Bessel function of the second kind of order 0 for the input argument x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the value of the Bessel function of the second kind of order 0.
- y0f(0) returns .
- y0f(x) returns NaN for x < 0.
- y0f( ) returns +0.
- y0f(NaN) returns NaN.
- __device__ float y1f ( float x )
-
Calculate the value of the Bessel function of the second kind of order 1 for the input argument. Calculate the value of the Bessel function of the second kind of order 1 for the input argument x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the value of the Bessel function of the second kind of order 1.
- y1f(0) returns .
- y1f(x) returns NaN for x < 0.
- y1f( ) returns +0.
- y1f(NaN) returns NaN.
- __device__ float ynf ( int n, float x )
-
Calculate the value of the Bessel function of the second kind of order n for the input argument. Calculate the value of the Bessel function of the second kind of order n for the input argument x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the value of the Bessel function of the second kind of order n.
- ynf(n, x) returns NaN for n < 0.
- ynf(n, 0) returns .
- ynf(n, x) returns NaN for x < 0.
- ynf(n, ) returns +0.
- ynf(n, NaN) returns NaN.